Week of April 5, 2019
Here at the California Science Weekly, we are working hard to bring you the most interesting, informative and entertaining stories about science in the state of California. Every week, we pore through hundreds of articles and Web sites to find the top stories that we believe are worthy of your time. We will also be writing feature stories, developing a podcast and producing a video series that will take our content offerings to a whole new level. We hope you’ll stay with us and share our work with others via Twitter and Facebook. If there is anything you’d be interested in learning more about, send us a note, and let us know.
Biology
An homage to Cal Tech’s fly lab
Few critters in the history of science have been as important to our understanding of life as the humble fruit fly. The genus Drosophila melanogaster holds a particularly esteemed spot among the dozens of model organisms that provide insight into life’s inner workings. Much of the work has taken place, and is taking place now, right here in California.
CalTech Magazine has a wonderful story by Lori Dajose about the crucial role the fruit fly has played in science and why we should all revere this underappreciated insect.
The story begins in 1906 at Columbia University in the fly lab Thomas Hunt Morgan, whose work with white-eyed mutants established chromosomes as the pathway of inheritance for genes. Morgan made his way to CalTech in 1928 to found the school’s Division of Biology, and ever since then, the school has been a launching pad for ground-breaking research (and a few Nobel Prizes) using fruit flies.
Other notable names involved in fruit fly research include Ed Lewis, who helped standardize fruit fly food, but more importantly discovered how Hox genes control embryonic development (for which he won the 1995 Nobel Prize) and Seymour Benzer, a pioneer the field of neurogenetics and the subject of one of our favorite science books of all time here at the CSW: Jonathan Weiner’s Time, Love, Memory: A Great Biologist and His Quest for the Origins of Behavior. The breakthroughs made in Benzer’s Fly Rooms form the basis of much of our current understanding of genes and behavior.
The essay goes on to describe the great work that continues at CalTech with researchers like Elizabeth Hong, who is investigating how the brain orders and encodes complex odors, David Anderson, who studies emotions and behaviors, and Michael Dickinson, whose lab investigates how the tiny fruit fly brain gives rise to flight. So much to learn from one little insect and one great institution.
Agriculture
Saving California’s fruit
Two hours south of San Francisco, a lawyer turned horticulturalist named C. Todd Kennedy is helping preserve America’s agricultural legacy. Todd is one of California’s premier experts on fruit. As a co-founder of the Arboreum Company, he has single-handedly saved numerous rare varieties of so-called stone fruit like peaches, plums, and apricots from possibly disappearing forever.
Physics
UCI researchers see life’s vibrations
Using a cutting edge new type of microscope, scientists at the University of California, Irvine have for the first time captured images of the way that a molecule vibrates down at the atomic level. These vibrations drive the chemistry of all matter, including the function of living cells. “From structural changes in chemistry to molecular signaling, all dynamical processes in life have to do with molecular vibrations, without which all would be frozen,” said co-author V. Ara Apkarian, a UCI Distinguished Professor of chemistry.
The breakthrough was published in a paper in the science journal Nature. The advance could open up new ways of seeing and understanding the sub-microscopic/ atomic world. The research was conducted at UCI’s Center for Chemistry at the Space-Time Limit, maybe the coolest name for a lab ever.
Geology and earthquakes
Could winter storms cause earthquakes?
All the snow we’ve been getting in the high Sierras may cause skiers and farmers to rejoice, but a new study from Emily Montgomery-Brown at the US Geological Survey in Menlo Park, California, suggests a connection between the heavy runoff following record snowfall in the Sierra Nevada and small earthquakes. Using historical records, Montgomery-Brown and others have determined that small earthquakes occur 37 times more often when there is high runoff from melting snowpack. One theory is that the water permeates the ground and changes pressures deep down within faults, leading to small quakes.
Health
Are we ready for brain enhancement?
You have probably never heard of Klotho, but according to a story by Carl Zimmer in the New York Times, this mysterious hormone could one day lead to a way to prevent, or even enhance, cognitive ability.
Research on mice by Dr. Dena Dubal at the University of California, San Francisco, suggests that Klotho protects mice from cognitive decline, likely due to Alzheimer’s disease. The mice bred to make extra Klotho also performed better running mazes and in other cognitive tests. “Klotho didn’t just protect their brains, the researchers concluded — it enhanced them,” writes Zimmer. Further research suggests that Klotho could also extend life.
In March, Dr. Dubal released a study suggesting that Klotho may also protect people from Alzheimer’s disease. The Alzheimer’s Association says that 5.8 million Americans are currently living with the debilitating disease.
The bigger question that the piece raises is whether Klotho pills or gene manipulation techniques like Crispr that might stimulate Klotho production, could someday be available to humans for cognitive enhancement. In other words, brain boosting. The idea raises numerous ethical questions such as who would get access and how much would it cost? What if you could pass these enhancements on to your children? “If people could raise their SAT scores by taking a pill the night before an exam,” writes Zimmer, “that might not seem fair.”
Space
NASA’s JPL tests new Mars copter
It’s mind-boggling enough that we’ve been able to explore Mars using rovers big and small. But what if the next step is navigating the red planet with a vehicle that can lift off and soar above the dusty surface?
NASA’s Jet Propulsion Laboratory (JPL) is testing a new helicopter, a small, autonomous rotorcraft weighing about four pounds, that will travel with the Mars 2020 rover, one of JPL’s most ambitious projects ever. The 2020 rover is currently scheduled to launch in July 2020 and is expected to reach Mars in February 2021. The vehicle has been in development since August 2013 at JPL’s testing facility in La Canada Flintridge, California.
Flying a copter on Mars is a lot more challenging than doing so on earth. The thin atmosphere means that the copter’s blades will have to spin at almost 3,000 rpm, about 10 times the rate of a helicopter on Earth. Then there is the Martian climate with dust storms and temperatures that can fall as low as minus 130 degrees Fahrenheit.
The copter project is only one small part of the larger Mars 2020 mission, and is considered a high-risk, high-reward project. If it fails, it won’t impact the mission’s larger goals, including answering key questions about the potential for life on Mars.
Last year, JPL released this informative video about the project.
